AD-A120 095 TEXAS UNIV AT AUSTIN DEPT OF COMPUTER SCIENCES F/6 /2
ANNUAL SCIENTIFIC REPORT FOR GRANT AFOSR-81-0205, 15 JUNE 1981 ==ETC(U)
JUL 82 K M CHANDY. AFOSR-BI-OZO
UNCLASSIFIED AFOSR=TR-82-08

08
{07!

! LY
Cons

.

b UiCLASSIFIED . 4
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) » =~

READ INSTRUCTIONS
REPORT DOCUMENTA'I"nN PAGE BEFORE COMPLETING FORM
[T RERORTMmTm T T - ’ 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
|
AFOSR-TR- 82 - 0880 \4p4s2c 025 |
m 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
c:) ANNUAL SCIENTIFIC REPORT FOR GRANT AFOSR-81-0205, ANNUAL, 15 Jun 81-14 Jun 82 ?
15 JUNE 1981-14 JUNE 1982 6. PERFORMING OG. REPORT NUMBER '
7. AUTHOR(s) 8. CONTRACT OR GRANY NUMBER(s)
: K.M. Chandy AFOSR-81-0205
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK
= Computer Sciences Department AREA 8 WORK UNIT NUMBER :
¢ University of Texas PE61102F; 2304/A2]
Austin TX 78712 ;
Q 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Directorate of Mathematical & Information Sciences | July 1982
<< Air Force Office of Scientific Research T NUWBER OF FAgES A
Bolling AFB DC 20332 11 ‘
18. MONITORING AGENCY NAME & ADDRESS(if different Irom Controlling Olfice) 15. SECURITY CLASS. (of this report) ’
UNCLASSIFIED
15a, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (cof this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

- 18. SUPPLEMENTARY NOTES

4 19. KEY WORDS (Continue on reverse side il necessary and identity by block number) (:‘-. .

1]20. ABSTRACTY (Contieove on revaree aide If necsssary ansd identity by block number)
~4 In the last year, work aon the grant was carried ocut in three areas: (1) the \
development of distribated alzrrithms to detect termination of distributed com- .
3 putaticns, (2) rethods for proving the correctness of distributed programs, with o

'S T an emphas:Ls on proving temporal peoperties and (3) the development of distribute !
T O algorithms to solve graph probiems. Vork in all three areas was fruitful, 2
resulting in new ideas and refereed papers in technical journals and conferences.
; " The author has felt that the key issues in designing and proving distributed
' = ?8g§¥aie are (1) proving that all the processes in the system cooperate in main-{
: Fonrm £DITION OF 1 NOV 65 IS OBSOLETE
DD , jan 7 1473 UNCLASSIFIED Y

SECURITY CLASSIFICATION OF THIS PALE (When Data Entered)

e

S

s i AN AN Ao eI

. : { -
. = /V\ . ~
UNCLASSIFIED
SECURITY CLASSIFICATION OF TM\§ PAGE(When Data Entered)
ITEM #20, CONTINUED:AKtaining a system-wide invariant and (2) developing i
algorithms by which asynchronous processes can determine collectively that the !
system ac a whole has entered certain states. Work in the last year was based
¢ on the above premise. The author's work on developing new distributed .
algorithms supports this premise,

e e
— e - [|
copy P I T |
INSPECTED . L T
P T

2

-

a1t Al

'v

‘ |

DTIC [O , '
- |

i

3

f

§

!

SECURITY CLASSIFICATION OF Yo' > AGE(When Dete Er'-

) AROSR-TR- 82-0880 E
|
|

Annual Report for Grant AFOSR 81-0285

Research Objectives

The goal of this project is to study the problem of
developing correct and efficient distributed software, i.e.
software which consists of cooperating processes. The specific

focus is on the distributed nature of the distributed software.

Our objective is to extend techniques developed for sequential j

programs to distributed programs. C

The development of a sequential program consists of posing

Ry S

assertions, constructing a program to ensure that these asser-

I tions are maintained and then proving that they are. Termina- 1

tion is shown by demonstrating that execution of the program
reduces some metric which is bounded from below. The major
problems in extending this methodology to distributed systems
are: (1) no one process can assert, unilaterally, that an in-
variant holds, because some other process may cause the invariant

to be violated and (2) a distributed system may terminate in

v M.y A

the form of a deadlock for instance, even though no process in

the system has terminated; furthermore, no process can assert !

unilaterally that the entire system has terminated. The funda-

mental problem with distributed systems is to ensure cooperation

- e

among processes in maintaining invariants and in achieving proper

termination. Therefore, the focus of this project was, and con-

i be, issu o ration.
tinues to s 1 es of cooperation ApprovedforPUblic release®

dlstributionunlimited.

82 10 12 166

Annual Report

The project has been extremely successful in tl.e last year J
resulting in the identification of fundamental problems and the
publication of solutions to some of these problems. Work was
carried out in 3 areas:

1. Distributed algorithms for detecting termination of 'j
distributed computations.

2. Methods for proving correctness of distributed
sof tware.

3. The development of distributed algorithms to solve
problems in various application areas.

Termination Detection

A distributed computation may terminate due to a deadlock

or because the computation has been successfully completed.

The major impetus for developing distributed termination detec-
tion algorithms has come from distributed data bases where the
concern is to detect deadlock (because data bases may be pre-
sumed to run indefinitely). Therefore our primary goal last
year, was to develop correct, practical and simple distributed
algorithms to detect deadlock. Motivation for attacking the
problem was also derived from the following statement in a

recent paper by Gligor and Shattuck: "Renewed interest in distri-

buted systems has resulted in the publication of at least ten

protocols for deadlock detection. However, few of these proto-
cols are correct and fewer appear to be practical.”
In a system consisting of processes which only communicate

with a single central agent, deadlﬁﬁ’%oﬁ?ﬁ’ o\zpretcg 81'7; ggr’ﬁgrfracs&gm (AFSC)
NOTICE OF TRANSMITTAL TO DTIC \
This technicnl repsrt hag been roviewad and {5 j
approved for o lit ~nlesan 120 85" 13313,
Distributio~ - 17 :v
MA TP v . :

B R R

s Ak g < e

e

W———ae o = s - e . B - %
. ot ’

Annual Report page 3

because the central agent has complete information about every
process. Deadlock detection is more difficult when there is

no such central agent and processes may communicate directly
with one another. 1I1f we could assume that message communication
is instantaneous or place other restrictions on message delays,
deadlock detection becomes simpler. However, the only realistic
general assumption is that message delays are arbitrary (but
finite). Ve present deadlock detection algorithms for networks
of processes in which there is no single central agent and in
which message delays are arbitrary (but finite). We only assume
that messages sent by a process A to a process B are received by
B in the order sent by A.

Ve consider two models of deadlock in message communicating
systems: resource and communication deadlocks. Deadlock detec-
tion algorithms are given for both models. Most models of dead-
lock in distributed data bases are resource deadlock models
{5,6,7,8,9,10,11,14]1; in these models deadlock arises because
processes may wait permanently for one another for resources held
by each other. The communication deadlock model is a more abstract
and more general model of deadlock; it is applicable to any mes-
sage communicating system of processes.

We have presented and proved the correctness of simple,
practical algorithms to detect resource and communication

deadlocks (1,2,12].

Annual Report paqge 4

Methods for Proving Correctness of Distributed Software

Our primary goal in this area has been to extend well-
known sequential programming proof constructs such as pre-
condition, post-condition and the use of metrics in proving ter-
mination to distributed programs. The obvious advantage in
using techniques which are extensions of seqguential-programming
techniques is that the tools and the experience gained from
sequential programming can be applied to distributed programs as
well., We work with a general model of distributed systems; we
do not require that distributed programs be coded in any parti-
cular language for purposes of proof.

The key features of our method are:

1. Modular Specification: We present a scheme for speci-
fying processes in a modular fashion. The specification

relies exclusively on a process's interaction with its
environment and is independent of process implementation.

2. Hierarchy: We present inference rules by which a
specification for a network is derived from specifica-
tions of component processes. Thus the proof of a
network is not concerned with implementations of
component processes.

3. Compatibility With Sequential Programming Proof Techniques:

We have extended well known sequential programming proof
constructs such as pre-condition,post-condition and the
ideas of termination proof to distributed systems. Those
familiar with the Floyd-Hoare proof technique fo:r sequen-
tial programming should find our method to be straight-
forward.

We use some ideas from sequential program proofs in proofs
of message-passing systems. In an annotated proof of a sequen-
tial program, each statement s has a precondition pre(s) and a

postcondition post(s). The proof shows that if asseriion pre(s)

Annual Report page 5

holds prior to execution of s, post(s) holds following execution
of s assuming execution of s terminates. We shall use the
precondition/postcondition concept for describing process safety
properties. Proofs of liveness (or termination) in sequential
programs are based on demonstrating the existence of a metric
such that the execution of each statement causes the metric to
decrease in value. We will use a similar technique in process
proofs. However, processes can wait indefinitely for messages,
something that conventional sequential programs do not do; to
handle this we introduce a new concept called activity which
is the condition under which a process will definitely send or
receive a message. Other liveness properties are derived frer
the basic property of activity and from safety.

We have developed a coherent extension of sequential pro-
gramming proof techniques to distributed programs. Several

examples are found in Ossefort [151.

The Development Of Distributed Algorithms To Solve Problems In

Various Application Areas

We have attempted to develop distributed algorithms in two
application areas: simulation and graph problems. The applica-
tion areas were chosen because of their importance and the
familiarity of the principal investigators with these areas.
Our pioneering effort in the distributed simulation area has
received wide recognition; therefore our effort last year was

primarily in graphs. By developing distributed simulations to

por s

Annual Report page 6 'l

important problems we hoped to gain experience in writing and
proving distributed programs, as well as making a contribution
to the literature on algorithms.

We began by developing a distributed solution for one of
the most-studied problems in graphs: finding the shortest path
between vertices. A distributed solution is important in the
following situation: communicaticn paths are being set up between
processes in an uinreliable, and perhaps even hostile environ-
ment. Since no process has information about all other processes
in the network, centralized, sequential-programming algorithms
cannot be used.

We developed a distributed algorithm to detect shortest
paths in graphs which have negative cycles. We also demonstrated
the application of our shortest-path algorithm in solving a %f
variety of graph problems including depth-first search.

Another important problem in graphs is that of detecting
knots: a vertex in a directed graph is in a knot if for every
vertex vj reachable from Ve vy is also reachable from Vj‘ The
problem of knot detection is important because of its relevance
to deadlocks [3,4]. We developed a scheme whereby a vertex (which |
is represented by a process) can determine if it belongs to a b

knot [13].

Computing Network-Wide Functions

We found that there was a sizable class of problems with

the following structure:

Annual Report page 7

Processes in a network cooperate in computing a result

which we call the glcbal-result where

global-result = f(local-result(i), for all processcs i)

where local-result(i) is some computed result in process i, at
its termination, and f is any computable function. The knot
detection problem is only one of many problems that fall within
this class. We developed general solutions to solve this class
of problems. Our solution was proved correct and its application

to specific practical problems was demonstrated.
SUMMARY

The past year has been very productive. If we can continue
the same rate of productivity in the future we shall be very
pleased. 1In the future we plan to enter new areas and to ensure
that the results of the past year are accepted and used by the

computer sciences community.

Annual Report page 3

(11

(3]

(41

(5]

(61

(7}

(8}

(91

[10]

(11}

REFERENCES

Chandy, K.M., J. Misra and L. Haas, "A Distributed
Deadlock Detection Algorithm and Its Correctness Proof,'
to appear Communications of the ACM.

1

Chandy, K.M. and J. Misra, "A Distributed Algorithm for
Detecting Resource Deadlocks in Distributed Systems,"
Froceedings of the ACM SIGACT-S1GOPS Principles of
Distributed Computing Conference, Augqust 18-20, 1982,
Ottawa, Canada.

Chanyg, Ernest, "Decentralized Deadlock Detection in
Distributed Systems," University of Victoria, Victoria,
British Columbia, Canada V8W 2Y2.

Dijkstra, E.W. and C.S. Scholten, "Termination Detection
for Diffusing Computation,” Information Processing Letters,
Vol. 11, No. 1, pp. 1-4, August 1980, North-Holland
Publishing Company.

Gligor, V.D. and S.H. Shattuck, "Deadlock Detection in
Distributed Systems," I1EEE Transactions on Software
Engineering, SE-6, 5, September 1980, pp. 435-440

Goldman, B., "Deadlock Detection in Computer Networks,”
Technical Report MIT LCS-TR185, M.I1.T., September 1977.

Gray, J., "Notes on Database Operating Systems," in Lecture
Notes in Computer Science, Springer-Verlag, 1978.

Isloor, S.S. and T.A. Marsland, "An Effective 'On-Line’
Deadlock Detection Technique for Distributed Database
Management Systems,” Procecedings COMPSAC 1978, 1EEE,
pp. 283-288,

Lomet, D.B., "Coping with Deadlock in Distributed Systems,"
Research Report RC 7460 (#32196), 1BM T.J. Watson Research
Center, December 1978.

Mahoud, S.A. and J.S. Riordon, "Software Controlled Access
to Distributed Databases,"” INFOR 15, 1, February 1977,
pp. 22-36.

Menasce, D. and R. Muntz, "Locking and Deadlock Detection
in Distributed Databases,” IEEE Transactions on Software
Engineering, SE-5, 3, May 1979, pp. 195-202.

R — NG 55, . ST

A Tt A 4T

Annual Report

[12]

(13]

114]

[15]

Misra, Jayadev and K. M. Chandy, "Termination Detection
of Diffusing Computations in Communicating Sequential
Processes,"”" Transactions on Programming Languages and
Systems, Vol. 4, No. 1, January 1982, pp. 37-43.

Misra, J. and K.M. Chandy, "A Distributed Grarh Algorithm:
Knot Detection," to appear Transactions on Programming
Languages and Systems.

Obermarck, R., "Distributed Deadlock Detection Algorithms,”
ACM TODS, Vol. 7, No. 2, June 1982.

Ossefort, Marty, "Correctness Proofs of Communicating
Processes -~ Three Illustrative Examples from the Litera*+ e,”
to appear Transactions on Programming Languages and

Systems.

Annual Report (AFOSR 81-0205)

% List of Publications

-

1. Distributed Computation on Graphs: Shortest Path
Algorithms, to appear in Communications of the ACHM,
(K. M. Chandy and J. Misra)

2. A Distributed Deadlock Detection Algorithm and Tts
Correctness Proof, to appear in Communications of the
ACM, (K. M. Chandy, J. Misra and L. Haas)

3. A Distributed Graph Algorithm: Knot Detection,
to appear in ACM Transactions on Programming Languages
and Systems, (J. Misra and K. M. Chandy)

4. A Distributed Algorithm for Detecting Resource Doad-
locks in Distributed Systems, Proceedings of the ACM
SIGACT-SIGOPS Conference on the Principles of Distri-
buted Computing, August 18~20, 1982, Ottawe, Canada.

(K. M. Chandy and J. Micra)

5. Proving Safety and Liveness of Communicating Processes
with Examples, Proceedings of the ACM SIGACT-SI1GOP:
Conference on the Principles of Distributed Computing,
August 18-20, 1982, Ottawa, Canada (J. Misra, K. M. Chandy
and Todd Smith)

Annual Report (AFOSR 81-0205)

List of Professional Personnel

K. Mani Chandy, Principal Investigator

Jayadev Misra, Faculty, Computer Sciences, UT Austin

IR

